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Abstract

The paper is a review of sound generation in
turbulent shear flows. 1t emphasizes simultaneous
calculation of the turbulent flow along with the
resulting sound generation rather than the alterna-
tive acoustic analogy approach. The first part of
the paper is concerned with solid surface interac-
tion. The second part concentrates on the sound
generated by turbulence interacting with itself.

Introduction

The subject of this paper became a serious
scientific disc1p11ne about 35 years ago when
Lighthi1126,27 published his acoustic analogy
theory of jet noise. That work has more or less
dominated the subsequent development of this sub-
Ject, which is st111 somewhat incomplete--even
though 1t has undergone 1ittle change in the past
five years or so. This paper does not place much
emphasis on the acoustic analogy but rather concen-
trates on an alternative approach, which may be
more readily adapted for use on large-scale com-
puters to obtain more detatled information about
the sound field than would be possible from the
acoustic analogy.

This approach amounts to 1ittle more than cal-
cutating the unsteady flow that produces the sound
simultaneousiy with the resulting sound field,
starting from some prescribed upstream state that
s ideally specified just ahead of this region where
the sound generation takes place. To make progress
without resorting to full-scale numerical computa-
tion requires that the governing equations be line-
arized about some appropriate mean flow. .But that
ultimately has to be done, either implicitly or
explicitly, even with the acoustic analogy approach.
I have no doubt that the day will come when
turbulence-generated sound is calculated directly
from the Navier-Stokes equation, but, to my know-
ledge, that has yet to be done, and there is much
to be learned from the ex1st1ng work, which has
often led to relatively simple formulas that show
encouraging agreement with experiment and produce a
great deal of insight into and physical understand-
ing of the sound generation process. This paper is
a very selective review of that work, and it adopts
a very specific viewpoint.

The use of linearized theory to calculate tur-
bulent flows or, better yet, changes in turbulent
flows is a branch of turbulence theory now known as
"rapid-distortion theory" (see Moffatt3l). It
assumes that the following assumptions are satisfied
(Hunt24): (a) that u'/U << 1, where u' 1is the rms
turbulence velocity and U 1s the local meanflow
velocity; and (b) that the interaction or change
being calculated be compieted in a time, vy say,
that 1s short compared with gecay, where tdecay
1s the decay time or 1ifetime of a typical turbu]ent
eddy O0(L/u')--2 being the characteristic size of
turbulent eddies. Rapid-distortion calculations are
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usually based on the inviscid equations-- an approx-
imation that is justified when both the mean flow
and turbulence Reynolds numbers are large. The
important point here is that the radiated sound
field can be determined as a by-product of any such
rapid-distortion-theory calculation, as long as
compressibiltty effects are retained.

While it might seem most logical to begin by
omitting solid surface effects and to include them
only after the turbulence self-noise problem has
been appropriately dealt with, it turns out that
the solid boundaries actually simplify the problem
and allow a more rigorous treatment in, at least,
some cases. Consider then a high-Reynolds-number
turbulent airjet such as shown schematically in
Fig. 1. The maximum turbulence level occurs along
the centerline of the initial mixing layer, indica-
ted by the dashed line in the figure. Here the
ratio of the rms turbulence velocity to the local
mean-flow ve]ocity is roughly equal to 0.24
(Bradshaw et atl. ) which, although not all that
smatl, would probably st111 be considered to be an
acceptable "small parameter® to many classical
applied mathematicians. Condition (a) is therefore
reasonably well satisfied.

Solid Surface Effects

Now suppose that a semi-infinite but infinites-
imally thin flat plate is inserted into the flow as
shown in the figure. Then the interaction between
the turbulence and the leading edge will be comple-
ted in a time 1 = O(/U), which, in view of the
smallness of the turbulence intensity, is fairly
small compared with vqecay = O(2/u'). Thus, invis-
cid rapid-distortion theory applies, and the inter-
action between the turbulence and the edge can be
calculated by linearizing the inviscid equations
(the Euler equations) about the mean flow.

Since the ratio of the cross-stream to stream-
wise components of the mean-flow ve1oc1ty is of the
order of (u'/U)2 (Tennekes and Lumley? 0y, the order
of approximation will certainly not be diminished
if this flow is taken to be a unidirectional trans-
versely sheared flow. The important advantage of
using this fiow is that 1t 1s itself a solution of
the inviscid equations (for any velocity profile).
The resulting expansion is then a rational pertur-
bation that can, in principie, be carried to arbi-
trary order without internal inconsistency. The
lowest order equations are the same as those used
in inviscid stability theory, t.e. the Rayleigh
equations (see Betchov and Criminaled ), and as
already indicated, the radiated sound field can be
determined as part of the solution to these
equations--provided, of course, that compressibility
effects are retained.

To accomplish this, one must first decide on
an appropriate representation of the incident turbu-
lence. This would be rather easy to do if the mean
flow were completely uniform, since any solution
for the unsteady velocity/pressure fluctuations
could then be decomposed into the sum of an



Yacoustic solution" that carries no vorticity and a
vortical solution which produces no pressure fluc-
tuations and which is often referred to as the
*gust" or “hydrodynamic" solution. The latter is
used to represent the incident turbulence in most
problems that involve the interaction of turbulence
with solid surfaces embedded in uniform mean flow.
Its suitabiiity for this purpose is largely due to
the following reasons:

(1) It does not become infinite anywhere in
space, even in the absence of solid surfaces, so
that it can describe the turbulence field that would
exist i1f the surfaces were not present.

(2) It involves two arbitrary "convected" quan-
tities that can be specified as upstream boundary
conditions to describe the turbulence entering the
interaction zone in any given problem. This seems
to be the appropriate degree of generality, because
the the vorticity is a convected quantity that has
only two independent components (since its diver-
gence must vanish).

(3) It has no acoustic radiation field at sub-
sonic speeds and will in fact vanish exponentially
fast at transverse infinity if the mean and unsteady
vorticity fields are sufficiently compact.

Decomposition of the solution into acoustic
and vortical parts is no longer possible when the
mean flow is nonuniform, but the compressible
Rayleigh equations st111 possess a solution that
has the three properties 1isted above and, in fact,
approaches the "vortical® solution on a uniform
mean flow in the 1imit as the mean flow approaches
a uniform flow (Go]dste1n‘8v]9 and Mohring 2). This
would then seem to be the natural generalization of
the latter to nonuniform flows, and it would there-
fore seem appropriate to refer to 1t as the "gust"
or "hydrodynamic" solution and, more importantly,
to use it to represent the incidence turbulence.

We therefore use it to represent the incident
turbulence in the present problem of a large flat
plate embedded in a turbulent shear flow. Since
the gust solution does not satisfy the zero normal
velocity boundary condition at the plate, it is
necessary to add another solution to cancel this
component of velocity. Unlike the gust, this latter
solution does not vanish exponentially fast at
infinity but rather behaves 1ike a propagating
acoustic wave there (Goldsteinl!9). 1In other words,
the plate ts able to "scatter" the nonpropagating
motion associated with the gust into a ?ropagat1ng
acoustic wave (Ffowcs Willlams and Hall 3).

The problem also possesses an eigensolution
associated with the spatially growing instability
wave that can propagate downstream from the edge on
the inflectional mean-ve10c1t¥ profile (Crighton
and Leppington9 and Goldstein 0) The solution is
therefore not unique! It could be made unique if we
required that it remain bounded at infinity (since
that would eliminate the eigensolution which grows
without bound there). But since the linearization
1s only valid in the vicinity of the leading edge,
it 1s probably not appropriate to impose a
"boundary" condition far downstream in the fliow
where all sorts of nonlinear effects will have had a
chance to intervene (R1enstra35).

One can therefore look for an alternative way
to make the solution unique. This can be done by
treating the steady-state solution, which is, of
course, the one of interest here, as the long time
Timit of the solution to an inittal-value problem,
and then imposing a "causality condition® in the
sense that the solution is required to be identi-
cally zero before the initial time when the incident
disturbance 1s "turned on" (Crighton and
Leppingtong).

But Rienstra3® argued that an initial condition
imposed in the distant past may not be relevant to
the steady-state solution, since the linearization
might only be valid over a relatively short intervail
of time. One might therefore consider a third way
of making the solution unique. This amounts to
using the eigensotution to eliminate the leading-
edge singularity that appears in both the bounded
and causal solutions, 1.e. by satisfying a leading-
edge "Kutta condition" (Go]dsteinzo). This may
be rationalized by noting that the instability wave
represents downstream vortex shedding that could
adjust itself to eliminate the singularity in the
inviscid solution and thereby prevent any flow sep-
aration that would otherwise occur at a very sharp
edge.

It is not entirely clear which of these three
solutions is correct, but I expect Rienstra's36
argument is invalid and that imposition of causality
is probably appropriate here. Goldstein!9 compared
the theory with the data of Olsen,3 who measured
the sound radiated in one-third-octave frequency
bands as a function of the angle from the jet axis
in a plane perpendicular to that of the plate.
Comparison of experiment and theory is shown in
Fig. 2. The top of the figure corresponds to the
high-frequency 1imit where the instability waves
are "cut off" and the 1ssues of causality and Kutta
condition are irrelevant. However, the low-
frequency causal solution, which 1s shown at the
bottom, is strongly affected by the instability
wave. The agreement between experiment and theory
is good, but the causal and leading-edge Kutta con-
dition solutions have the same low-frequency limit,
and one cannot concliude from this comparison which
is correct. However, the bounded solution behaves
quite differently in this 1imit and consequently
does not agree with the data.

Sound Generated by Turbulence Interacting
With Itself: The Jet-Noise Problem

Having achieved some success in using linear
theory for the turbulence-leading-edge interaction,
it s natural to try using it to calculate the sound
generated by turbulence interacting with itself,
1.e. to deal with the problem of jet noise. I have
already pointed out that the ratio rms turbulence
velocity to local mean-flow velocity is reasonably
small in the region of maximum turbulence level, so
that the first requirement for the validity of
rapid-distortion theory (see Introduction) is satis-
fied. However, the interactton time <y, which in
the present context should be taken as the time for
the sound generation to occur, is now equal to the
decay time <gecay Of the turbulence, and the
second requ1remen¥ is not. But with no better
alternative at hand, we might stil11l attempt to
introduce the same small parameter as before, i.e.,
u'/U, and carry the corresponding asymptotic expan-
sion to its logical conclusion. Like the more ad




hoc acoustic-analogy approach, this systematic pro-
cedure assures that all appropriate conservation
Taws will be satisfied and that the acoustic sources
will be of the appropriate multipole order. But it
seems to have certain advantages over the acoustic
analogy in that it provides a "rational" framework
for assessing the internal consistency of the vari-
ous jet-noise analyses. It may also apply to some
physically realizable flow, which s hopefully not
too different from the real turbulent flow of inter-
est, and finally, it provides a method for identify-
ing acoustic sources and distinguishing acoustic and
nonacoustic components of the unsteady motion.

The Basic Equation

The lowest-order equations are, on the face of
it, the same as before, i.e. they are the compress-
ible Rayleigh's equations. It 1s well known
(Betchov and Cr1m1na1e4) that the velocity compo-
nents can be eliminated between these equations to
obtain a single equation for the normalized first-
order pressure fluctuation My = py/peC§, where p
js the actual first-order pressure fluctuation,
po(i}) is the mean-flow density, and Co(71) is the
mean-flow sound speed where the latter two quanti-
ties depend only the cross-stream coordinate X} =
{x3, x3} - x3, x2, x3 denoting Cartesian coordi-
nates with x3 1in the mean flow direction. This
equation can be written symbolically as

Lm =0, (m

where L denotes the third-order linear-wave
operator '
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t denotes the time, and D/Dt = 3/3t+Ua/ax,

convective derivative based on the mean-flow

velocity U(Xy).

L

is the

Since solid boundaries are acoustically irrele-
vant for the turbulence self-noise problem, 1t is
appropriate to suppose that the flow is defined
over all space. Then (for reasons given in the
section on solid surface interactions) the "gust"
or "hydrodynamic" solution is an appropriate solu-
tion of Eq. (1). But this equation also has (spa-
tially growing) instability-wave solutions which
can exist whenever the mean flow is inflectional
(Betchov and Criminaie?). Since many investigators
have argued (Crighton,®:7 Liu,2% Tam and Chen,38
Haertig,22 Gaster, Kit, Wygnanski,%4 and others)
that these latter solutions correspond to the exper-
imentally observed large-scale turbulent structures,
it would seem appropriate to identify the gust solu-
tion with the "fine-grained" (or relatively "fine-
grained") turbulent mottons.

However, there are experimentally observed,
large-scale motions which, on a global basis, seem
to bear 1ittle resemblance to any motion that can
be represented by either the gqust or linear
instability-wave solutions. This should come as no
surprise, since we have already noted that the Tin-
earized solution can at best remain valid over rela-
tively small streamwise distances.

We have seen that the gust solution produces
no acoustic radtation at subsonic speeds, and the
same can be said for the instability waves (but see
below). The asymptotic expansion must therefore be
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carried to the next order if it is to be used to

calculate radtated sound. The second-order normal-

tzed pressure fluctuation m, again satisfies a

third-order wave equation, but i1t is more convenient

to work with the isentropic density fluctuation
k-1 2

nsum, - 5, (3)

where k 1s the specific heat ratio.

satisfies

Then 1

=y, (4)

which, except for the inhomogeneous source term

-0 af
yEgp v f-28 . w, (5)

is the same as Eq. (1) for the first-order normal-
i1zed pressure fluctuation.

Equation (5) 1s identical to the source term
that would be produced by an externally applied
fluctuating force per unit mass T = {fq,fp,f3}
might therefore be thought of as a dipole-type
source, since a fluctuating force produces such a
source when there is no mean flow. The force T
is not, of course, arbitrary but is now gtven as a
quadratic function of the first-order solutions,
viz.

and

- () (M), 2 2 .
f] = axJ uy uJ + C] ax] n1, (1.3 = 1,2,3)
(6)
where ug]) are the first-order velocity

fluctuations and Cf = ké?T] is the first-order
square sound speed fluctuation (& being the gas
constant and Ty being the first-order temperature
fluctuation).

Egquations (4) to (6), with some relatively
minor differences, were first derived by L111ey.28
who used the acoustic-analogy approach. The result
is now commonly referred to as Lilley's equation.
In the present approach, it arises as the equation
for the composite second-order pressure fluctuation
0 with a source term y that involves only first-
order solutions. Since these solutions, which sat-
isfy the homogeneous Eq. (1), have no acoustic
fields at subsonic speeds, while the second-order
solution does, our expansion provides a (conceptual
if not experimental) mechanism for identifying
acoustic and nonacoustic parts of the unsteady
motion--but there are some complications.

The Sources of Sound

The second term in Eq. (6) represents a dipole-
typen source due to the temperature fluctuations in
the flow (Tester and Morfey??). While this source
is of real significance in actual high-temperature
jet exhausts, 1 will not discuss it in this paper.

1 concentrate rather on the first term, which, being
the divergence of the fluctuating (first-order)
Reynolds

stress u§1)u§1), corresponds to the source that

would be produced by an externally applied fluctua-
ting stress field. It might therefore be



interpreted, by analogy with the zero-mean-flow
case, as a quadrupolie-type source.

This latter term can be further decomposed into
a number of subsources by separating the first-order

solution ug]) into its gust and Tinear (spatially

growing) instability-wave components and, as before,
identifying the gust with the fine-grained turbulent
motion. Unfortunately, this procedure cannot be
carried to its logical conclusion because the linear
instability waves, which grow without bound on a
paraliel mean flow, will ultimately produce an
unbounded source term in Eq. (4). It would then be
inappropriate to use this equation to calculate the
acoustic field, since it is 1ts global, and not its
local, solutions that must be used in such a calcu-
lation. However, the real flow is only locally
parallel, and the slowly varying (rather than the
parallel-flow) approximation should be used to
represent the instability waves, as was done by
Crighton and Gaster,8 Tam and Morris,39 and others.
Then the source term in £q. (4) will remain bounded,
since the local growth rate of the instability wave
varies with the thickness of the jet or shear layer
(it first increases, reaches a maximum, and then
becomes negative as the thickness increases).

However, supersonically traveling waves can be
produced as a by-product of this approximation, and
these latter waves will couple to the radiation
field (Tam and Morris3%) when the first-order solu-
tion is rendered uniformly valid (by using an appro-
priate singular perturbation procedure, such as the
method of multiple scales34). Our previous comment
that the first-order solution has no radiation field
therefore needs to be qualified. We return to this
below, but for now the important point is that the
first term in F should then describe the sound
generation due to the following types of
interactions:

(1) Linear instability wave-fine-grained
turbulence.

(2) Linear instability wave-linear instability
wave.

(3) Fine-grained turbulence-fine-grained
turbulence.

This 1ist may be incomplete, of course, or
even inappropriate, since as I already indicated,
there are other types of large-scale motions in the
jet that do not seem to be globally representable
by either the gqust or instability wave.

In any case, it is clear that this 1ist should
only be taken as an indication of the types of
interactions that can occur and should not be
considered to be the result of a rigorous analysis.
In fact we shall eventually show that nonuniform-
tties in the asymptotic expansion cause these inter-
actions to occur at different asymptotic orders than
the present formal expansion would suggest. One
might then choose to ignore the 1ist entirely and
argue that the experimentally observed turbulent
motions should be used in place of the first-order
solutions that appear in the source term (5), which
is, in effect, what is done in the acoustic-analogy
approach. However, I do not think that it should
be dismissed entirely and therefore consider it in
some detail.

Its first item, i.e. the instability wave fine-
grained turbulence interaction, has only been con-
sidered very briefly in the iiterature (Ffowcs
Williams and Kempton, 14 Berman,3 t1u29) and, to myl
knowledge, only 1imited quantitative results have
been obtained for this interaction. It can be
thought of as the sound generated by the fine-
grained turbulence shaking the instability waves
and is 1ikely to emerge as an important source mech-
anism in relatively low Reynolds-number flows.

The instability wave-instability-wave inter-
action may be related to the vortex-pairing events
that occur in the initial mixing region of a high-
speed jet. These events can be experimentally
enhanced by exciting the jet with an external acous-
tic source tuned to the most unstable frequency of
the shear layer at the nozzle 1ip, as was done by
Kibens.25 He found this to cause a supression of
the natural broadband noise of the jet with most of
the sound being generated at subharmonics of the
excitation frequency. By taking measurements 1in
the near and far flelds, KibensZ5 showed that there
was no Doppler shift in frequency, indicating that
the sound was generated by nonconvecting sources
within the jet, whose locations he subsequently
identified with the vortex-pairing locations.

However, quadratic interactions between two-
dimensional (or between axisymmetric) instability
waves produce only subsonically traveling waves on
a subsonic parallel mean flow, and these waves do
not radiate sound. 8ut the straightforward pertur-
bation analysis of these interactions is (1ike the
stratghtforward nonparallel mean-flow analysis)
nonuniformly valid in the streamwise direction
(leading to the so-called Kelley45 resonance),
and (as in the nonparallel analysis) supersonically
traveling waves are produced when the straight-
forward asymptotic solution 1s rendered uniformly
valid in that direction. The sound field can then
be calculated by using a procedure similar to the
one used by Huerre and Crighton2d for the sound
generated by the nonlinear saturation of a single
instability wave. But a more systematic approach
might be to adapt the procedure used by Tam and
Morris>? to this case.

The Lighthill Result

The fine-grained turbulence-fine-grained-
turbulence interaction is essentially the mechanism
originally considered by Lighth111.28,27 pifficul-
ties such as those discussed in conjunction with
instability wave-instability-wave interaction may
also occur when the present perturbation approach
is applied to this case. Lighthill's acoustic
analogy theory leads to a stationary medium (1.e.
classical) wave equation. He suggests that it
should be possible to neglect variations in retarded
time across the turbulent eddies (or correlation
volumes) in this case, since the time L/C,

(1 - M cos ©) for a sound wave to cross a turbulent
eddy will be small compared with the characteristic
time &/u' of the sound source at subsonic jet
velocities (Goldsteinl7). Here M; 1s the “convec-
tion Mach number" of the turbulence, and e 1{s the
angle between the downstream jet axis and the line
connecting the source point and the observation
point.

It is a consequence of the Tinearity of the
wave operator on the left side of Eq. (4) that the




sound radiated by any given turbulent eddy will

then be independent of that radiated by any other
eddy. Lighthi11 therefore argued that each eddy
should behave 1ike a point quadrupole source moving
downstream with the "convection velocity" of the
turbulence and that the entire sound field of the
Jet could then be estimated by calculating the sound
radiated by a “typical" turbulent eddy. This pic-
ture turns out to be a slight overs1mp11f1cat1on
and was later corrected by Ffowcs williams.'

In the L1ghth11126/FfQ¥cs williams12 result,
the mean-square pressure radiated in any pro-
portional frequency band at a fixed source frequency
Q, where o = (1 - M, cos @) is the actual fre-
quency of the sound, behaves like

2@
pf -t (7
(1 - Mccos o)

so that its "directivity pattern" 1s primarily
determined by the Doppler factor (1 - M. cos &)
raised to the -5 power. These five inverse Doppler
factors produce a highly directional radiation pat-
tern at high subsonic Mach numbers--which is remark-
ably similar to experimental observation.

Solutions of Lilley's Equation

Solutions of Eq. (4) with y treated as a
moving point source can be interpreted as correc-
tions to the Lighthi1126/Ffowcs Will1ams12 result
(7) that account for the effects of the nonuniform
surrounding mean flow. A number_of us (Mant,
Balsa,!+2 Berman,3 Goldstein,19:16,21 Tester and
Morfey,42 Scott,37 Li1ley,28 etc.) therefore decided
to calculate the acoustic radiation from point quad-
rupole sources moving through transversely sheared
mean flows. The relevant solutions usually had to
be obtained numerically, but relatively simple
closed-form (or nearly closed-form) sotutions were

ocbtained tn the lowand high-frequency 1imits «D/Uj
<< 1 and wD/Uj >> 1, respectively, where D
denotes the jet diameter (see Fig. 1) and U,

denotes the jet velocity.

Low-frequency solutions were obtained for a
round jet with arbitrary mean-velocity profile by
Goldsteinl5.76 and Balsa.2 A1l components of an
idealized quadrupole convecting through a stationary
medium exhibit directivity patterns given by inverse
Doppler factors times sines and cosines of the
observation angle. The low-frequency analyses show
that only the x;3-x3 and xy-r quadrupole compo-
nents (where r 1is the radial coordinate) retain
this property in the presence of a parallel but
nonuniform mean flow. The remaining quadrupole
components exhibit directivity patterns given by
more-complex formulas involving the complete mean-
velocity profile and the location of the sources
within the jet (Go]dste1n 6y,

However, the low-frequency analyses uncovered
the very surprising result that the mean flow causes
certain quadrupole components to emit sound much
more efficiently than they otherwise would--the
mean-square pressures in the absence and presence of
the mean flow being respectively, 0(e%) and 0(e2)
as @ =+ 0. The acoustic fleld of the xy-r quad-
rupole, which is the only one of these more effi-
cient sources that can be expressed in simple
Doppler-factor form, is proportional to the local

mean-velocity gradient. It is worth noting that
this source arises as much from the first member of
the source term (5) as from the second, even though
the former does not exp11c1t1y invoive the mean-
velocity gradient (Balsa ).

Observed low-frequency jet-noise directivity
patterns therefore depend on complex properties of
the jet turbulence and mean flow that are difficult
to estimate. But the mathematical results are con-
sistent with the experimentally observed result
that they will always be more directional than
Lighthi11's inverse five Doppler factors would
indicate, or, to be more specific, the analytical
and experimental results show that the low-frequency
sound should be more concentrated on the down-stream
axis than Lighthill's result impiies, with the on-
axis sound being produced by the quadrupoles with
one axis in the streamwise direction.

The high-frequency solutions, which were
obtained by Lilley,28 Tester and Burrin,% Baisa,'s?
Berman,3 and Goldstein,17,2! exhibit a “zone of
silence" on the downstream jet axis. The acoustic
field 1s exponentially small in that region, which
is circumferentially asymmetric when the jet is
nonaxisymmetric and/or the sound source is located
off-axis. It will f111 the entire range of circum-
ferential angles when o 4s sufficientiy close to
the downstream jet axis (see Fig. 3), but will only
occupy a limited range of angles (say eocmin < ¢ <
omax) at larger values of © (say 6cmin
< 8 < 8cmax). and finally it will disappear com-
pletely when © > 6cpayx. (See Fig. 4.) These
remarks only apply to subsonic isothermal jets with
monotonic or nearly monotonic mean-velocity pro-
files. A host of complex interference effects may
occur when these restrictions are relaxed.

As in geometric optics, the sound propagates
along distinct rays in the high-frequency approxi-
mation. Only one ray can reach the observer when
© > Ocpax. but there will be at least two rays
reaching the observer when ocpmin < © < 6cmax -~ 2
direct ray and a ray reflected from the boundary of
the zone of silence (Goldste1n2]). The correspond-
ing sound waves can then interfere, but the interfer-
ence term will be a rapidly oscillating function of
angle and, since all acoustic measurements involve
some for of a spatial averaging, may not be experi-
mentally observable.

The mean square pressure radiated in any pro-
portional frequency band of fixed source frequency
Q will then be the sum of the mean-square pressures
for each ray reaching the observer. The result for
a convecting quadrupole source, corrected for the
Ffowcs Williams'2 effect, is given by (Goldstein2l)

3
i 2013"1“

1.3=1
* 2 2 5 A((P)v
(4«Rcmco) (1 - Mcos )~ (1 - Mccos )

2
p

(8)

where R 1s the distance between the source point
and the observation point shown in Fig. 4, p, and
Ce. are the density and sound speeds at infinity,
and M is the Mach number based on the mean flow at
the source location and the speed of sound at



infinity. The Q4 denote the relative quad-
rupole strengths,

vq = cos O, (9)

2
1 - Mcos 6 2
0 ( ¢,/C. > - cos'e,

vy = QoS A, v, = qos1n A,

1

q. = (10)

A 1s the initial circumferential angle made by the
acoustic ray associated with £q. (8B), and A

denotes a “"circumferential directivity factor" that
depends on the circumferential observation angle e,
the location of the sound source within the jet, and
the mean-velocity and temperatures profiles of the
jet.

Equation (8) is an exact high-frequency result
that applies to jets of any cross section and with
any transverse mean-velocity and temperature pro-
files, but % and A must be calculated by solving
a second-order ordinary differential equation in
the general case. They are, however, given by rel-
atively simple analytic formulas (Go]dste1n21) for
off-axis sources at arbitrary locations in a cir-
cular jet with arbitrary velocity and temperature
profiles.

The circumferential directivity factor can be
used to study the effect of nonaxisymmetric Jet
velocity and temperature profiles in reducing jet
noise below the flight path of a jet aircraft, which
is of considerable interest for technological appli-
cation (Von Glahn and Goodykoontz#3). But for
the present purpose, it is appropriate to concen-
trate on the azimuthal directivity pattern, which
is relatively unaffected by this factor.

Equation (8) shows that the inverse-Doppler-
factor exponent is increased from 5 to 7 in the
high-frequency 1imit, since the local mean-fiow
Mach number and the turbulence-convection Mach num-
ber are usually not very different in the regions
of peak turbulence intensity. This taken by itself
would cause the high-frequency sound (1ike the low-
frequency sound) to be more directional than
Lighthil1's Eq. 57) would predict. If, however,
following Balsa,¢ the quadrupole is assumed to be
isotropic so that

01J = 61300. (1,) = 1,2,3) (1)
where &4y 1s the Kronecker delta, it follows from
Egs. (9) and (10) that

3
Q 2 [l -Mcos e 4 O2
3% /¢, o’

1,3=1

which more than compensates for the additional two
Doppler factors in the denominator of Eq. (8) and
produces a net azimuthal directivity pattern that

is given by three inverse Doppler factors -- in
excellent agreement with the experimentally observed
one-third octave directivity patterns.

The interpretation of this result is that the
reduced directivity of the high-frequency sound is
due to interference between the various quadrupole
components. Note that the mean-square pressure is
now the product of an azimuthal directivity factor
that depends only on 6 and a circumferential
directivity factor that depends only on ¢. It is,

“through the appropriate mean flow.

of course, highly unlikely that the actual quadru-
poles will precisely satisfy Eq. (11), but the anal-
ysis strongly suggests that quadrupole component
interference effects can greatly reduce jet-noise
directivity.

Sound Generation Due to Streamwise
Variations in Mean Flow

The formal asymptotic expansion in powers of
(u'/U) can be continued to the third order. At
this stage, interactions between the first-order
perturbation solution and the streamwise vartations
in the mean flow will appear in the source term.
[Recall that the ratio of the cross-stream to
streamwise components of the mean-flow velocity is
0((u'/U)2). while the first-order solution is
O(u'/U).] Then, by decomposing the first-order
solution into its gqust and instability-wave compo-
nents and making the connection between the gust
and fine-grained turbulence that we discussed above,
we infer that the source term now describes sound
generation due to (a) the fine-grained turbulence
interacting with streamwise variations (1.e. spread-
ing) of the mean flow and (b) the instability waves

“interacting with the streamwise mean-flow varia-

tions. The first mechanism has, to my knowledge,
not yet been considered in the literature. The
second will already be accounted for in the first-
order analysis if the slowly varying approximation
is used to describe the instabiiity waves. This
mechanism has been analyzed in a more ad hoc fashion
by Crow and Champagne,1V Ffowcs Williams and
Kempton,14 Huerre and Crighton,23 and L1u,29 and in
a systematic way by Tam and Morris.39 However, Tam
and Morris39 ultimately conclude that this source is
not important at subsonic speeds, which is consist-
ent with the findings of Moore,3-’3 who studied the
phenomenon experimentally by artificially exciting a
jet under conditions that tended to minimize vortex
pairing. Unlike Kibens,25 Moore found that the
broadband noise was usually increased rather than
suppressed by the external excitation. He concluded
that the instability wave, while not radiating noise
directly, acted as a conduit through which energy
could be transferred to the smalli-scale turbulent
motion.

Concluding Remarks

Comparisons of the results of the previous
section with experiment suggest that the high-
frequency solution may remain valid at frequencies
that are low enough to include the most energetic
portion of the jet-noise spectrum. This might also
be true for other more complex turbulent flows. We
may therefore be able to calculate the sound gener-
ated in such flows by finding the high-frequency
solution for a point quadrupole source moving
Durbintl
recently obtained such a solution for a completely
general mean flow. Up to now our remarks have been
confined to subsonic flows, though much of what has
been said also applied to supersonic flows. How-
ever, some interesting new phenomena also come into
play in these flows.
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Figure 1. - Plate embedded in turbulent airjet,
Note that the leading edge of the plate is posi-
tioned in the region of maximum turbulence
intensity so that its sound field will exceed
the background jet noise by the maximum
amount,
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